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Sliding mode controller design for second-order
unstable processes with dead-time

Mohammad Atif Siddiqui1∗ , Md Nishat Anwar2 , Shahedul Haque Laskar3

A new approach is proposed to design the sliding mode (SM) controller for the unstable second-order plus dead-time
(SOPDT) processes. The sliding mode control consists of two control laws ie continuous control law and discontinuous control
law. The continuous control law parameters have been derived in terms of unstable SOPDT process parameters using the root
locus technique. On the other hand, the parameters of discontinuous control law are tuned by optimizing a performance index
using a recently developed metaheuristic search algorithm, namely the grasshopper optimization technique. The performance
index is framed to achieve a good trade-off between performance and control efforts. Finally, simulations are conducted to
validate the effectiveness of the proposed approach over the other existing techniques. It is observed that the proposed
approach is able to deliver better disturbance rejection, minimal control efforts and good setpoint tracking.
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1 Introduction

In the most recent period, there is a growing interest
in developing robust control methods for systems having
modelling errors. Among the existing methods, the sliding
mode control (SMC) technique seems a more favourable
technique for controlling the plant model with modelling
errors [1, 2]. The sliding mode control technique is widely
known in the process industry for its property of being
robust to modelling errors, external disturbances and pa-
rameter variations. These properties make sliding mode
control technique quite effective in many practical appli-
cations such as in electric drives [3, 4], robotics [5], auto-
motive systems [6], unmanned aerial vehicles [7].

Recently, the use of sliding mode control technique
to control chemical processes have gained a lot of atten-
tion. Camacho and Smith [8] designed the sliding mode
controller based on the stable first order plus dead-time
(FOPDT) model for nonlinear chemical processes. The
results obtained by Camacho and Smith show large over-
shoot and long settling time. To overcome the short-
comings of [8], Kaya [9] designed the SM controller by
selecting a new sliding surface for the stable processes.
Kaya synthesizes the SM controller based on the stable
FOPDT model. To solve the issues related to the delay
approximation, some researchers [10, 11] adopted Smith
predictor (SP) or internal model control (IMC) schemes
together with sliding mode control technique to achieve
robust performance. Mehta and Kaya [12] used a slid-
ing mode control technique in a complex SP structure, a
metaheuristic optimization algorithm and a new power-
rate reaching law to control higher-order stable processes.

They approximated the higher order model into the sta-
ble FOPDT model to synthesize the SM controller. Re-
cently, Herrera et al [13] used the FOPDT model-based
dynamic sliding mode control procedure in a complex
CI&A (compensator of Iinoya and Altpeter) structure to
control higher-order processes with time delay and in-
verse response characteristic. Although complex schemes
improved the closed loop performance, but for industrial
implementation a simple control structure is much pre-
ferred.

The literature cited from [6–13] reveals that many
researchers have addressed the design of the SM con-
troller for stable processes. However, very few researchers
have carried out research in the design of the SM con-
troller for unstable processes. To control the unstable
processes, Rojas et al [14] extended the work of Cama-
cho and Cruz [10], both these works, however, uses the
FOPDT model to synthesize the SM controller. Later on,
the technique of [14] is modified by Sivaramakrishnan et

al [15] to derive the SM controller parameters to control
unstable processes having a dead time to time constant
ratio greater than 1. Their method shows little improve-
ment for process uncertainty but not for load disturbance.
Mehta and Rojas [16] designed the SM controller for the
unstable processes by utilizing the same SP-SMC struc-
ture of Mehta and Kaya [12]. They synthesized the SM
controller based on the unstable FOPDT model derived
by a modified relay experiment. Their method showed
merit over the method of Sivaramakrishnan et al [15].

In all the schemes reported above, the models uti-
lized to synthesize the sliding mode controller are of a
first-order having dead-time. It is to note that for higher-
order stable plants, the process can be approximated into
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Fig. 1. A simple feedback scheme with SMC

a first-order model having an apparent dead-time and
apparent time constant. But, for higher-order unstable
plants, a FOPDT model is not adequate to represent its
dynamics. The reason being that, apart from unstable dy-
namic lags, there exist stable time constants in the plant.
Thus, utilizing a SOPDT model for unstable-higher order
plant would be better because more information regard-
ing the plant dynamics can be represented in SOPDT
as compared to FOPDT model. For sliding mode control
based on the SOPDT model, there are only a few works
reported in the literature [17, 18]. Therefore, proposing a
sliding mode technique using an unstable SOPDT model
will be valuable for the chemical industry.

Hence, in this paper, a sliding mode controller is
designed using the unstable SOPDT model to control
second-order unstable processes. A sliding surface hav-
ing four parameters is introduced to handle the unstable
SOPDT processes in a simple structure. The control law
parameters are obtained using the set of tuning equations
(being developed in terms of SOPDT model parameters),
the root locus technique and an advanced metaheuristic
search algorithm, namely the grasshopper optimization
technique. Simulation examples are presented to demon-
strate the efficacy of the proposed SMC method over the
recently published approaches.

2 Sliding mode control

The sliding mode control is a robust control scheme
that can compensate for inaccuracies in plant modelling.
The objective of the sliding mode control is to drag the
closed-loop system from its original state to a surface
known as a sliding surface. The sliding surface is selected
to characterize a desired tracking and stability behaviour.
Hence, the initial measure in designing a controller using
SMC is to specify the sliding surface ss(t). Thus, in this
work, the sliding surface ss(t) is

ss(t) = k1e(t) + k2

t∫

0

e(t)dt+ k3
de(t)

dt
+

d2e(t)

dt2
. (1)

In (1), the terms k1, k2 and k3 are the constant gains
and e(t) is the tracking error.

From the control point of view, the aim is to drive and
maintain the controlled variable at its reference value.
Once the reference value is achieved, (1) indicates that the
surface ss(t) has acquired a constant value meaning that,

error and its derivative become zero. So to maintain ss(t)
at a constant value, it is desirable to make its derivative
equal to zero and this can be mathematically represented
as

dss(t)

dt
=

d3e(t)

dt3
+ k2e(t) + k3

d2e(t)

dt2
+ k1

de(t)

dt
= 0 . (2)

After selecting the sliding surface, the sliding mode con-
trol law is to be developed that satisfy the conditions
ss(t) = 0 and its time derivative s′s(t) = 0. The sliding
mode control law, Utot , comprises of two components: a
continuous component, Ucc(t), and a discontinuous com-
ponent Ud(t)

Utot(t) = Ucc(t) + Ud(t) . (3)

The continuous component, Ucc(t) is expressed as

Ucc(t) = f
(
X(t), R(t), e(t)

)
. (4)

In (4), f
(
X(t), R(t), e(t)

)
is a function of the system

output, the reference value and the tracking error.

The discontinuous part, Ud(t), represents the reaching
mode which is accountable for directing the system state
trajectory towards the sliding surface. Since this part is
discontinuous throughout the surface [9, 15, 19], it may
result in an undesirable high-frequency oscillation known
as chattering. This chattering decreases the accuracy of
the controller, causes wear and tear in the actuators and
stimulates undesired dynamics. To avoid this chattering,
one probable solution [6, 8] is to use

Ud(t) = KD
ss(t)

|ss(t)|+ δ
. (5)

Here, δ and KD are the adjusting parameters account-
able for minimizing the chattering phenomenon and di-
recting the state trajectory towards the sliding surface,
respectively.

3 The proposed sliding mode controller design

In this section, the SM controller for the unstable
second-order plus dead-time process (SOPDT) is devel-
oped. The design of the continuous component of SMC is
discussed first and then the tuning of the discontinuous
component of SMC is discussed.

To control the unstable SOPDT process, the control
scheme considered is shown in Fig. 1.

In Fig. 1, X is the system output, Utot is the plant
input, R is the set-point input, N is the noise input and
D is the disturbance input. The unstable SOPDT transfer
function is

Gp(s) =
x(s)

utot(s)
=

Ke−ls

(τ1s− 1)(τ2s+ 1
(6)
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where K is the gain, τ1 and τ2 are the time constants and
l is the dead-time of the plant. In (6), x(s) and utot(s)
are the Laplace transform of the system output and plant
input, respectively. Both x(s) and utot(s) are deviation

variables. In this work, the dead-time term (e−ls) present
in process Gp(s) is ationalized by using the first-order
Taylor series approximation that results in the following
transfer function

Gp(s) =
x(s)

utot(s)
=

K

τ1τ2ls3 +
(
l(τ1 − τ2) + τ1τ2

)
s2 + (τ1 − τ2 − l)s− 1

=

K

c3s3 + c2s2 + c1s− c0
. (7)

Here, c3 = τ1τ2l , c2 = l(τ1 − τ2) + τ1τ2 , c1 = τ1 − τ2 − l
and c0 = 1.

From (7), for the controller output Utot is derived as

KUtot(t) = c3X
′′′(t) + c2X

′′(t) + c1X
′(t) − c0X(T ) (8)

the prime denoting time derivative. Equation (8) is solved
for the 3rd order of derivative and is substituted in (2)
by considering e(t) = R(t)−X(t), that results in

s′s(t) =
1

c3

(
−KUtot(t) + c2X

′′(t) + c1X
′(t)− c0X(t)

)

+ k2e(t)− k3X
′′(t)− k1X

′(t) = 0 . (9)

For the control law Utot(t) is derived

KUtot(t) = X ′′(t)(c2 − k3c3) +X ′(t)(c1 − k1c3)

− c0X(t) + k2c3e(t) . (10)

It is to note that once the system response reaches the
sliding surface, Ud(t) component gets turned off and
Utot(t) corresponds to Ucc(t) as

KUcc(t) = X ′′(t)(c2 − k3c3) +X ′(t)(c1 − k1c3)

− c0X(t) + k2c3e(t) . (11)

Furthermore, the controller’s continuous part may be
simplified by letting c2−k3c3 = 0 and c1−c3k1 = 0 that
results in

KUcc(t) = −X(t)(c0 + k2c3) + k2c3R(t) . (12)

In SMC, the sliding surface defines the rationale of the
closed-loop system. Hence, the condition Ucc(s)Gp(s) =
x(s) must be satisfied. With this condition, the closed-
loop transfer function can be obtained by using (7)
and (12) as

x(s)

r(s)
=

Gp(s)k2c3
K +Gp(s) [c0 + k2c3]

=

k2c3
c3s3 + c2s2 + c1s+ k2c3

. (13)

The last equation is further simplified as

X(s)

r(s)
=

1

1 +

[
s3 +

c2
c3
s2 +

c1
c3
s

]
1

k2

=
1

1 + G̃(s)
1

k 2

(14)

and the characteristic equation of the closed-loop system

is obtained

1 + G̃(s)
1

k2
= 0 . (15)

The value of k2 is obtained through the root locus

technique. Here, the root locus of G̃(s) be plotted in

MATLAB environment by using the rlocus command.

From the root locus plot, the k2 value may be selected

such that the desired percentage overshoot in the set-

point response is obtained. With the selected k2 value,

the design of the continuous control law of the SMC can

be completed.

The discontinuous part, Ud(t), as mentioned in (5)

have two parameters (KD and δ). These parameters

are accountable for reaching the sliding surface and re-

ducing the chattering problem. It is observed that sev-

eral researchers have used the metaheuristic algorithm

to determine the values of KD and δ [20]. Nelder and

Mead searching algorithm is utilized by [8, 15] to achieve

the KD and δ values. The particle swarm optimiza-

tion (PSO) technique is utilized by Mehta and Kaya [12]

while the cuckoo search (CS) algorithm is adopted by

Mehta and Rojas [16] to achieve these values. In this

work, a recently developed optimization technique known

as grasshopper optimization technique (GOA) is used

to tune the KD and δ values. The reason for using

this technique is that it has shown superior performance

over many nature-inspired optimization algorithms such

as PSO, CS, Genetic algorithm, Ant colony, firefly al-

gorithm [21, 22]. Furthermore, this technique can solve

problems with unknown search spaces and delivers supe-

rior performance with faster convergence.

Utot(t)=
−X(t) [c0 + k2c3] + k2c3R(t)

K
+KD

ss(t)

|ss(t)|+ δ
,

ss(t)=sign(K)
(
k1e(t) + k2

t∫

0

e(t)dt+ k3e
′(t) + e′′(t)

)
.

(16)

In (16), the sign(K) is considered to ensure the proper

operation of the controller for the particular plant model.

It is important to note that the value of sign(K) depends

only on the gain of the plant model [19].
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4 Grasshopper Optimization Algorithm (GOA)

Grasshoppers are a class of hemimetabolous insects
that belong to the Orthoptera (order) and Caelifera
(suborder) with dominant rear legs. Grasshopper gen-
erally lives a solitary life, but when they become locusts,
they form swarms of locusts. This unique behaviour of
grasshopper ie foraging and swarming has been mathe-
matically mimicked to propose a grasshopper optimiza-
tion algorithm (GOA) by Saremi et al [21].

Interaction or communication among grasshoppers oc-
curs locally as well as globally. During swarming, they
interact globally by exploration and locally by exploita-
tion. The effectiveness of their social communication with
respect to exploitation or exploration is possibly defined
by a function S (a social force function) as

S(r) = −e−r + e−r/Lf (17)

where, f is the intensity of attraction, r is the random
number in [0, 1] and L is the attractive length scale.
Any change in f and L parameter will change the social
behaviour of the grasshoppers.

In a swarm of Gi (virtual grasshoppers), the popula-
tion for N search agents can be initialized as

Gi =rand(1, N)(ubi − lbi) + lbi

i = 1, 2, . . . , dim
(18)

The mathematical representation of i -th position of a
search agent along with d-th dimension is given in (19)
which mimics the swarming psychology of the grasshop-
per as

Xd
i = C

(
C
ubd − lbd

2

N∑

j 6=i
j=1

xj − xi

dij
S
(
|xd

j −xd
i |
))

+ îd (19)

ubd is upper bound
lbd is lower bound

}
∈ dthdimension

xi is the position of i -th grasshopper, xj is the position
of j -th grasshopper and d-th is the distance between xi

and xj . C is the decreasing coefficient which balances the
exploitation and exploration about the target by minimiz-
ing the comfortable distance or comfort zone proportional
to the number of iteration. C is estimated as follows

C =
Cmax − Cmin

Maxitr
(Cmax − l) . (20)

Here, Cmin and Cmax are the minimum and maximum
values, respectively. The current iteration is indicated
by l .

The interaction between grasshoppers with respect to
the position of other grasshoppers in a swarm is im-
plemented by the first term in (19) and propensity to
progress towards food (target) in d-th dimension is trig-
gered by id in (19).

The important features of GOA are

• The position vector in GOA is one for each search
agent.

• In the swarm, the position of the search agent is up-
dated by including the current position, global best
and the position of each search agent.

The detailed description of GOA is mentioned in [21, 22]
and the flowchart of GOA is shown in Fig. 2. In this work,
GOA is utilized to optimize the objective function by tun-
ing the discontinuous control law parameters within the
specified range (ub and lb). The dimension of the swarm
is selected as 2 because the parameters to be tuned by
GOA for N search agents are KD and δ . The parameters
for GOA are selected as Cmax = 1, Cmin = 4 × 10−5 ,
f = 0.5 and L = 1.5 and codes are written in .m file
of MATLAB. Simulations are performed by utilizing an
IntelrcoreTM i3-7020U CPU @ 2.3 GHz and 4 GB RAM
desktop.

5 Objective function formulation

The objective functions have an important role in re-
solving optimization problems and choosing the correct
error function is the core element of it. Choosing the
integral absolute error (IAE ) function as an objective
function offers an improved performance ie minimizing
overshoots and enhancing load disturbance rejection [23].
The IAE function is defined as

IAE =

∫ ∞

0

|R(t)−X(t)|dt . (21)

Minimizing the IAE function may not be adequate to
claim an optimal controller with minimal control signal
variations. Literature reveals that sudden large variation
in controller output results in wear and tear of valves
which is undesirable. To quantitatively measure the total
variation of the controller output, a criterion known as
the total variation (TV ) is defined by [24] is used here.
The TV value of the controller is given as

TV =

∞∑

i=1

|ui+1 − ui|. (22)

In this work, the authors aim to combine the above
two quantities to achieve better-closed loop performance
along with minimum controller variation. The objective
function to be minimized is as

Jtot =

t∑

n=1

∞∫

0

|R(tn)−X(tn)|dt+
1

τ1

t∑

n=1

|un+1−un| (23)

where τ1 is the time constant of the model and t is the
total duration of the simulation which is kept greater than
the settling time. Here, τ1 is the constraint imposed on
total variation meaning that a small value of τ1 allows
low controller output variation.
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Fig. 2. Flowchart of GOA

6 Simulation results

The performance of the proposed SM controller de-
sign method has been compared with the performance of

the recently published methods (Mehta and Rojas [16]
and Atic and Kaya [25]). The performance has been com-
pared in terms of (i) peak value of the system output
(ymax = max |Y1|) , (ii) integral absolute error, (iii) inte-

gral square error
(
ISE =

∫∞

0

(
R(t)−X(t)2dt

)
, (iv) inte-

gral time absolute error
(
ITAE =

∫∞

0
t |R (t)−X (t)|dt

)
,

and (v) total variation (TV ). Lesser values of ymax ,
IAE , ISE , ITAE and TV indicate better performance
of the closed control system.

6.1 Example 1

In this example, the unstable SOPDT process is taken
from the literature Mehta and Rojas [16] as

Gp(s) =
e−0.5s

s2 + 1.5s− 1
. (24)

The method by Mehta and Rojas [16] uses a relay feed-
back test to approximate this unstable SOPDT process
into the FOPDT model as 1.001e−1.0587s

/
(2s − 1). The

authors have used the approximated FOPDT model and
a cuckoo optimization algorithm to design the sliding
mode controller in the Smith predictor configuration.
Their method has shown better performance compared to
earlier mentioned works in the literature. The proposed
method uses an unstable SOPDT model and GOA op-
timization algorithm to obtain the controller parameters
as (k1 = 3.1, k2 = 1.5, k3 = 4, KD = 32.56, δ = 15).
With these controller settings, both the methods are sim-
ulated by applying a setpoint change of magnitude 5 at
t = 0 s and disturbance change of magnitude −0.1 at
t = 50 s. The corresponding closed-loop response and the
controller response are shown in Fig. 3 and Fig. 4, respec-
tively

Figure 3 and Fig. 4 illustrate that the proposed me-
thod delivers significantly improved performance com-
pared to that of the Mehta and Rojas with less controller
output variations (TV = 52.83). Furthermore, small
overshoot with lesser oscillation in setpoint response and
prompt disturbance rejection in regulatory response is ob-
served by the proposed method as compared to Mehta

Process variable

0 10 20 30 Time (s) 50

2

4

6

8

60

5

4.95

5550 65 70 75

Proposed

Mehta and Rojas

Fig. 3. System response due to input change for Gp(s) =

e−0.5s
/

(s2 + 1.5s− 1)

Controller output

0 10 20 40 Time (s) 60
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Mehta and Rojas

30 70

100

-100

Fig. 4. Controller response due to input change for Gp(s) =

e−0.5s
/

(s2 + 1.5s− 1)
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Fig. 7. System response due to noise for
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Process response

0 10 20 40 Time (s) 60

4

Proposed

Mehta and Rojas

30 70

6

8

2

Fig. 8. System response due to perturbation in process parameters

for Gp(s) = e−0.5s
/

(s2 + 1.5s− 1)

and Rojas. The reason for better results by the proposed
method in comparison to Mehta and Rojas is due to the
use of an unstable SOPDT model instead of an unstable
FOPDT model in synthesizing the SMC controller. The
performances indices listed in Tab. 1 (Example 1) also in-
dicate better performance of the proposed method as the
values of IAE , ISE , ITAE , TV and ymax are lower
than [16].

The proposed method has been also investigated for
different objective functions having ITAE and integral
square time error (ISTE) index as given below

JITAE,tot =

t∑

n=1

∞∫

0

t|R(tn)−X(tn)|dt

+
1

τ1

t∑

n=1

|un+1 − un| , (25)

JISTE,tot =

t∑

n=1

∞∫

0

(
tR(tn)−X(tn)

)2
dt

+
1

τ1

t∑

n=1

|un+1 − un| . (26)

Equations (25) and (26) are minimized by GOA and the
optimal value of the discontinuous control law parameters
(KD, δ) are obtained as (16.13, 9.9) and (27.1, 14.03),
respectively. The system response and controller output
for different objective functions are shown in Fig. 5 and
Fig. 6. It is observed from Fig. 5 that the overshoot
for IAE is minimum whereas the overshoot for ITAE
is maximum. The controller output in Fig. 6 indicates
that some chattering is observed for the ISTE that may
cause wear and tear in the final control elements. From
the simulation response, it is observed that the objective
function mentioned in (23) is a better choice for obtaining
the values of KD and δ .

In the industrial process, noise may emerge from
the process itself, control valves and measurement de-
vices. Therefore, to justify the effectiveness of the present
scheme under noisy situations, simulation of the example
is conducted by considering the white noise (noise power
of 1, seed equal to 0 and sampling time of 0.2 s). The
system output under noisy conditions is shown in Fig. 7.
For the sake of simplicity, the effect of noise on system
output (X) is expressed as δX% = (σX/D) × 100 [26].
Here, σX is the standard deviation of the system out-
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Fig. 9. A composite sample with barely visible impact damage
under test: (a) – photograph, (b) – 3D view of the impact image by

chromatic confocal optical microscopy
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Fig. 10. Frequency responses of the CSRR sensor for impact dam-
age detection
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Fig. 11. A composite sample with barely visible impact damage
under test: (a) – photograph, (b) – 3D view of the impact image by

chromatic confocal optical microscopy
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Fig. 12. Frequency responses of the CSRR sensor for impact dam-
age detection

Table 1. Performance indices

Methods IAE ISE ITAE TV ymax δY1

Complete signal (R +D1) R D1 (%)

Example 1

Proposed 13.4 36.64 50.2 53.6 6.7 0.044 286

Mehta and Rojas 14.5 39.54 59.4 730 9.38 0.052 289

Example 2

Proposed 28.6 70.86 280 13.36 6.90 0.25 411

Atic and Kaya 153 1170 2190 78.97 20.6 0.51 512

put under noisy condition and D is the magnitude of

the load disturbance which is considered as D = 1 at

t = 0. Calculation of δX% for the proposed method and

Mehta and Rojas [16] method are carried out when the

system reaches a steady-state. The obtained value of δX%

is listed in Tab. 1 (Example 1). From Fig. 7 and Tab. 1,

it is observed that the present scheme delivers good per-

formance even in noisy conditions.

A model is generally achieved through some fitting or

linearization technique that results in a mismatch be-

tween the actual plant and model. Therefore it is criti-

cal to analyze the robustness of the control system as a

plant model mismatch is inevitable. Hence, the robust-

ness analysis is performed by introducing perturbation of

+10 % in gain and time delay of the process. The per-

turbed system response is shown in Fig. 8.From this, it
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can be observed that the design scheme of Mehta and
Rojas fails to track the setpoint command while the pro-
posed method allows to track the setpoint command un-
der perturbed conditions. Thus, the overall performance
of the proposed method is found better than the method
of Mehta and Rojas.

6.2 Example 2

An unstable SOPDT transfer function studied by Atic
and Kaya [25] is considered as

Gp(s) =
e−0.5s

(2s− 1)(0.5s+ 1)
(27)

Atic and Kaya [25] approximated this process into

the FOPDT model (e−0.918s/(2.69s − 1)) by utilizing a
relay feedback test. Based on the FOPDT model, Atic
and Kaya obtained the controller settings. The proposed
SM controller settings are obtained considering the un-
stable SOPDT model as k1 = 2, k2 = 0.45, k3 = 3.5,
KD = 12.38, δ = 2.69. With these controller settings,
simulations are carried out by applying a step signal of
magnitude 5 at t = 0 and disturbance signal of magni-
tude −0.2 at t = 60 s. The corresponding closed-loop
response and controller output are shown in Fig. 9 and
Fig. 10. The performance indices for the setpoint and load
disturbance response are listed in Tab. 1, Example 2.

It is observed from Fig. 9 that the present approach
delivers reduced overshoot, fast setpoint tracking and en-
hance load disturbance rejection in comparison with [25].
The performance indices such as IAE , ISE , ITAE and

ymax
are small and the TV value is also lesser for the

present approach (see Tab. 1, Example 2). Also, smooth
controller efforts have been observed in Fig. 10 by the
proposed method. It is clear from the simulation results
that the present approach yields superior closed-loop per-
formance over the method of [25]. The effect of noise is
analyzed by applying white noise having noise power of
1, seed equal to 0 and sampling time of 0.1 s. The re-
sulting system output is shown in Fig. 11. For simplicity,
the standard deviation of the system output under noisy
conditions is calculated after applying a load disturbance
change of magnitude 1 at t = 0. The obtained δX% is
given in Tab. 1, Example 2. From Tab. 1 and Fig. 11, it
is observed that the present scheme is less responsive to
noise as compared to Atic and Kaya [25] method.

The robustness of the proposed SMC controller is in-
vestigated by introducing perturbation of +10% in K, τ1
and l simultaneously toward the worst-case model mis-

match, ie Gp(s) = 1.1 e( − 0.55s)/(2.2s− 1)/(0.5s + 1).
The perturbed response for both the setpoint change and
load disturbance change is given in Fig.12. The presented
response indicates that the present scheme has a smooth
and fast response. The method of Atic and Kaya [25]
shows oscillations with large settling time. The proposed
method shows better closed-loop performance, even in
perturbed conditions.

7 Conclusions

A simple unstable SOPDT model based sliding mode

control scheme is presented for unstable SOPDT pro-

cesses. The sliding surface is selected and its parameters

are obtained using a group of equations that are derived

in terms of unstable SOPDT process parameters and ap-

plying the root locus technique. The parameters of the

reaching mode and the chattering mode are tuned by

minimizing IAE performance with TV value using a re-

cently developed metaheuristic algorithm, ie grasshopper

optimization algorithm. Through simulation results, it is

shown that good set-point tracking, better load distur-

bance rejection and lower IAE , ISE , ITAE , TV and

ymax values are obtained by the designed sliding mode

controller as compared to some previous methods. The

better results of the present scheme are shown with re-

spect to process uncertainty and measurement noise. The

proposed method may be extended to higher-order unsta-
ble processes.
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